Title ofCourse		Fluid mechanics			
Semester		Autumn/Spring			
Teaching		Total	- Lectures:	- Tutorials:	
Hours per Course:		60	30	30	
ECTS Credits			5	30	
The content of education					
Aims	The	The course is concerned with basic knowledge of the fluid mechanics and			
ofCourse	the a	e associated engineering applications. The aim of the course is			
		owledge and understanding of basic ideas, phenomena, and laws that			
		ern of fluid flow, which may be incompressible in liquids and			
	_	empressible in gases. Thermomechanics and thermodynamics are			
	cons	considered for that purpose. The application of the gained knowledge in			
		industrial equipment design is considered as well. It may be done by			
		determining of flow and thermal parameters in various industrial facilities			
		and in environment as well.			
Program	L1-2 – Basic ideas. Fluid properties. Investigating methods in fluid				
	mechanics. Fluid mechanics applications; L3-4 – Hydrostatic: forces that				
	1	act of fluids, hydrostatic pressure. Fluids equilibrium equations. Pascal's			
	1	Law. Normal and tangent pressure. Floating bodies equilibrium; L5-6 -			
	1	Kinematics of fluid flow: analytical studies of fluid motions, basic ideas of luid flow theories, continuity equation; L7-8 - Bernoulli equation			
		pplication for velocity and volumetric rate measurements; L9-10 – Liquid			
		atflow off holes, gasous outflow off holes and nozzles – Laval nozzle;			
	1	11-12 – Hydrodynamical reactions. Fluid dynamics basis: newtonian and			
	1	non-newtonian fluids; L13-14 – Bernoulli equation for viscous liquid,			
		aminar and turbulent flow – Reynolds experiment; L15-16 – Viscous flow			
		n channels: basic relations, drag coefficients, local and linear drag,			
		pipeline calculations; L17-18 – Transient flow in pressured channels,			
	hydr	hydraulic impact; L19-21 – Compressible flow theory. Mach number.			
	Shoo	Shockwaves. Investigation methods in gases. L22-23 – Boundary layer			
	theo	heory. Boundary layer properties. Boundary layer detachment phenomena;			
		24 – Computational Fluid Dynamics basics; L25-26 – Finite Volume			
		ethod for calculating incompressible steady-state flow; L27-28 –			
	1	ompressible and transient flows calculations; L29-30 – Thermomechanics			
C I''		of fluids			
Conditions	The condition for passing the course is passing the examination from the				
ofcompletion	lecture and practice part. All the organization details and evaluation				
		principles are consistent with, and other relevant issues not mentioned in the present document are regulated by, Regulations of studies at the Warsaw			
	1 -	University of Technology.			
Teacher	Prof. Dr. Krzysztof J. Wołosz				
1 Cachel	1101	DI. INIZYBZIOI J. W OIUS	oL .		